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EMERGENCE PATHS OF CRACKS ON A FREE SURFACE 

D U R I N G  W E D G I N G  

V. P. Efimov, P. A. Martynyuk, and E. N. Sher UDC 539.375 

The present paper is a continuation of [1], where we mainly examined the propagation of hydraulic fracturing cracks 

near free surfaces. A hydraulic fracturing crack is defined on the assumption that the tangential stresses at its boundaries are 
zero, while the normal stresses are constant along the length. In mining, one usually employs a technique in which the working 

tool is a wedge. One therefore needs an adequate description of wedging. 
Here the wedging is simulated by the application of a pair of localized forces whose directions are dependent on the 

angle of the wedge and the coefficient of friction between the wedge and the medium. The quasistatic emergence paths on a 
rectilinear boundary have been compared with the experimental paths derived from impacts of wedges at various angles on 
lucite specimens. We examined how the major parameters affected the path shape: inclination angle of nuclear crack, inclination 

angle of wedge axis, wedge angle, and coefficient of fraction. The algorithm used to calculate the quasistatie paths is justified 
for describing impact wedging, where in the experiments, the mean speed of the crack was 200-250 m/see. We used the 

singular integral equation method [2,4]. 

We simulate the action of the wedge on the medium. By 2/3 we denote the wedge angle and by a0 the deviation of the 
wedge axis from the vertical, which in general may not coincide with the initial nuclear crack direction. We take the area of 
contact between the wedge and the material as much less than the size of the crack, and then the normal and tangential stresses 
can be replaced by resultant localized forces N and T, which are directed respectively along the normal and along the tangent 

to the boundaries of the wedge. We assume that [ T ] = k t ] N I (kt = tan 3, is the coefficient of friction between the metal and 
the medium). The crack in wedging thus develops under the localized forces [ F I = IF I I = [ F21, applied to the edges, which 
emerge on the free surface, with the direction of the forces determined by the wedge angle, coefficient of friction, and 

inclination angle of the wedge axis. 
The [2, 3] solution method works well when the load varies smoothly along the crack. We therefore displace the points 

of application of the localized forces from the edges of the crack into the body, but leave their directions unchanged. We 

assume that the localized forces F 1 and F 2 are applied at the points z 1 = (e I - -  ie2)e i~0 and z 2 = - ( e  I + ie2)e ic~o, where e 1 
and e 2 are the coordinates of the points of application in the Xl'OYl', coordinate system, which is related to the direction of 
the wedge axis (Fig. la). The localized forces are applied not to the edges of the crack but are referred to the surfaces at 

internal points z 1 and z2, which is unimportant because test calculations with crack length L > 4e 1 (e 1 = e 2) gave stress 
intensity coefficients at the vertex of the crack differing from standard values [2, 3] by less than 2 %. 

Quasistatic Formulation. Consider an isotropic elastic half-plane y < 0 containing N smooth curvilinear lines of 

discontinuity Lk(k = 1, N) beginning from the boundary (Fig. lb). Line of discontinuity L 1 is a developing crack, while the 

others delimit the region in which it propagates. For example, with N = 2, L 2 simulates the shaPoe of the free surface boundary. 
Each line of discontinuity L k is referred to its local coordinate system xkOtyk(k = 1, N), with (x~, y0) the origin of local system 

k in the main system and ak the angle between the Ox and O~k axes. The shape of each L k in its local coordinate system is 

known and is defined by the parametric equation 
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Fig. 1 

We assume that the boundary of the half-plane is free from stresses. We derive the solution to the elastic problem when all 
the contours of the lines of discontinuity are free (the localized forces are applied at inner points of the body), which amounts 
to deriving N unknown functions gk'(~) from the following complex singular equation system [1, 3]: 

N 1 

k--1 - 1  
(1) 

I~1 ~< 1 ,  n=~,---.'~. 

Here gk'(~) = gk'(tk)~ and gk'(tk) is the derivative of the displacement step: 

d ~ k  [(.~ + irk) + -- ( .~  + i v D - ]  = i ( i  + (t~ ~ L~); 

with m = 3 - -  4~, ~ Poisson's ratio (we envisage planar strain),/t the shear modulus, and 

Rk.(~,  ,7) = R ~ ( T k ,  T. )  = e+~ [r  '7) + p.rk=(~, 7)] ; 

S/~(~, r/) = S~(T/c,  T . )  = e -iq~ [(/~(~, ~/) + p.sk,~(~, +7)1 ; 
�9 o Tk = Y~(~) = .~kC~)d~ + ~ . ;  T .  = T~C,7) = ,~ . (~ )e  ~ + z~ ; 

I 1 a(~) 
(k,,(~, ~/) = b(~, ~) a(~, v/) a(~, v/) 2 ; 

I I - bAT~ a(~) 
,'k,,(r = b(~,,7---) "(~,,---) + (b(~,,7) , ,,.(~,,7)~ ; 

8kn(~,  +7) = b(~,  vl)[ a (~ ,  vl) - 2  - ~ 2 ]  ; 

a (~ )  = Tk(~)  - T k ( ~ ) ;  bCz/) = Y.(v / )  - T.Cv/); 

4 ~ , ' 7 )  = Tk(~)  - Y. ( '7)  ; b(T,,7) = Ykff )  - T. ( ,7)  ; 
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- IF[  ~--~(- 1)" 2 R e ,  ---- + 
PIt(r/) = 2~r(1 + ze) t z  e -~2 + z t  

.s=l 

[e i - ' t z  (1) ei'v' I} +pIt -i.y, ~z 2tz + (aee-"~" -e"~ ~ ~zzae _ -~ +_ffi~(2(t.~s+z,t-)_t(~+zs)__~s(z,+t-)) 

( t=TI t ( r / ) ,  z t = z , - ~ ,  t z = t - z , ,  7 1 = a o - / 3 - 7 ,  7 2 = a o + / 3 + 7 )  �9 

The kernels of the singular integral equations (1) satisfy Rkn(--1, *7) =S lm( -  1, ~7) = 0 (k = 1, N), since all the lines 
of discontinuity begin at the boundary of the half-plane [2-4]. The solution to (1) is sought as 

= q - -  

where Ck(~) is a continuous complex function in the segment [ -  1, 1]. Gauss quadrature formulas [3] give from (1) a system 
composed of N(n - -  1) linear algebraic equations: 

N I t  

k = l  i=1 

j = I , N ,  m =  1 , n - 1 .  

(2) 

The value of n defines the order of approximation for the solution ~ok(~), where ~i(i = 1, n) and ,Tm(m = 1, n - -  1) are the 

zeros of the Chebyshev polynomials Tn(~) = cos(n arccos~) and U n_ 107) = sin(n arccos ~7)/~/1 -b72 . 
To close system (2), we specify bounded displacements at the left-hand ends of the lines of section emerging on the 

free surface, which implies obedience to the conditions 

~ok(-1) = 0, k = 1,N. (3) 

The values of ~ok(~) at the ends of the lines of discontinuity at ~ = 4-1 are defined by the solution of ~ok(~i) and the equations 

[31 

" 7r(2i-  1) 
~ok(-1) = 1 ~(_ l ) i+ .~ok (~ i  ) tg -4n ' 

n 
i=1 (4)  

I t  

~ok(1) -- - n l  y ~ ( _ l )  i ~ot,(~i) ctg 7r(2i4n- 1) , k = 1,---,~. 
i=1 

If the solution to (2) and (3) is known, we can use integral representations for the complex potentials @(z), ~(z) for 
a half-plane with lines of section [3, 5] and the Kolosov-Muskhelishvili formulas to determine the state of stress at each point 
in the region. The crack problem is that the components of the stress tensor have singularities in the region of the crack vertex. 
In a polar coordinate system related to the crack vertex, the following is the asymptotic distribution of the stresses in the region 
of the right-hand end of a curvilinear crack [2]: 

kl 0 k2 -3 sin ~ , ~o,~=~rr 3cos~%cos-- +~ -3sin-- +0( 

( 3h ( ' kl 0 k2 -5  sin ~ , ~rr=~r r 5cos~-cos-- +~r +3sin-- +O(v/~) 

o ( os ]r (sin ~ + sin 3~) k2 --  +3cos-- +o(VD. 
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Fig. 2 

The angle 0 > 0 if it is read counterclockwise from the direction of the tangent drawn to the right vertex of the crack. These 
expressions completely define k l and k 2, which are the stress intensity coefficients for the symmetrical and antisymmetrical 

distribution of the stresses relative to the crack line. When the crack grows in a field symmetrical with respect to it, k 2 = 0, 
and by virtue of  the symmetry, the crack will propagate in its own plane. In general, when there is no local symmetry, we 
employ the tro force criterion [2, 6], which has been used in numerical calculations on the experiments of  [7, 8]. On that 
criterion, the direction of initial crack growth will coincide with the plane in which the principal part of  the tensile stresses troo 

attains its maximum value. The angle defining that direction is 

kl - ~ + 8k] 
#.  = 2 ~ c t g  4k2 

(5) 

For k I ~ 0, we assume that the crack cannot grow further, and the edges of it are superimposed. The critical load governing 
the limiting equilibrium is found from the condition that the coefficient to the singularity (2r) -1/2 for croo with ~ = ~ .  is equal 
to the critical value of the stress intensity coefficient Kie/Vc~, which is a characteristic of  an elastic-brittle material: 

= v / ~ "  
(6) 

The stress intensity coefficients for the first crack in the solution of (2)-(4) are given [3] by 

kl-ik2= - ~ ~ ,  
1 

r is given by (4) and k 1 and k 2 are derived only for the first crack, whose path is calculated. 

Let the shape o~0(~) of crack L 1 be known at step i in the growth, and then we solve (2) and (3) and use (5) to 
determine the tg. indicating the direction of subsequent crack propagation. We specify the increment interval and describe the 
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new shape of the crack on the basis of the increase in length, i.e., we introduce the new function o~i+1)(~) (I ~ [ -< 1) for this 

crack, to get initial data for calculating the next step. In calculations on slightly inclined paths, where [o~ 1'(~)1 < o0, one can 

use the algorithm described in [3, 4], where at each incremental step the part of the path is approximated as a cubic parabola. 

The coefficients in the polynomial are derived from the conditions for smoothness of the continuation and the absence of points 

of inflection in the advancing part. In the present case the paths are fairly steep, and the load varies quite markedly along the 

crack. 

Test calculations showed that one can provide fairly high accuracy with a minimum number of  nodal points n if the 

origin in the local system is located at the center of  the line of  discontinuity. We use the following algorithm for constructing 

the path. We assume that at step i the shape of the crack ~z)(~) is described in the local coordinate system x~ O0~l)y~O, in which 

the ends of the crack at ~ = +1 are defined by the coordinates (+Xoi, 0). From the solution and the given increment ~ we 

determine the shape of the elongated crack, which is written as w~i+l)(~) in the new local coordinate system, whose axis 

o(i+1) (i+l) 1 xl passes along the chord joining the ends of the crack and the point for the origin divides the chord segment into 

halves. In all the calculations, the initial nuclear crack with length 2l 0 is assumed rectilinear and usually e I = e 2 = l o. 

Calculated Results and Comparison with Experiment.  We used lucite 100 • 100 x 10 mm. The wedging was 

produced by the fall of a wedge from a height of  200 ram. We used wedges having 2~ = 30; 45; 60*. The angle of  inclination 

for the initial crack c~ was regulated by shaped supports under the specimens. The impact was not at the middle of  the side of 

a square but a 40 mm from the right-hand edge. The wedge carried an acceleration sensor, which recorded the axial force as 

a function of  time. The force was related to the corresponding crack length by means of thin wires, which were broken when 

the crack intersected them. We determined c~ with an error of  about 5 ~ Also, the surface of the crack was often not orthogonal 

to the planes of the specimen, so the shapes of the paths on the front and rear sides differed somewhat. 

The shapes of the cracks were virtually identical in static wedging and in shock wedging, when the crack moved with 

a mean speed of about 200-250 m/see for identical initial angles of inclination, which leads one to hope that quasistatic 

calculations will apply for crack growth on impact wedging. Such calculations incorporate only the change in local stress pattern 

near the crack vertex caused by the elongation and curvature, while neglecting the effects from dynamic factors. 

We performed calculations with N = 3, in which the rectilinear lines of section L 2 and I-3 were represented by the 

vertical boundaries of the specimen, where dl = 1.5d (Fig. lb); the impact was at d = 40 mm from the right-hand vertex of 

the plate. The calculatedpaths differed in parameters by not more than 5% from the paths with N = 2, where L 2 was 

represented by the right-hand rectilinear vertical face. The following results were obtained with N = 2, and the function T2(~) 

was defined by 

T2(~) = w2(~)e -i~r/2 Jr z 0 = d -  il2(~ + 1), I~1 ~< 1, t2 = 2a .  

The only adjustable parameter is the coefficient of friction. As standards we used experimental paths obtained with a 

wedge having 2fl = 45", and c~ = -80*  and ot 0 = 10 ~ i.e., it was assumed that the wedge axis coincided with the axis of 

the nuclear crack. Calculations were done with various k t, and Fig. 2a shows the results with the indication of  2fl, o~, and c~ 0, 

in which the dashed lines show the standard paths and the solid lines 1-6 show the calculated paths for k t = 0.10; 0.15; 0.20; 

0.25; 0.30; 0.40. It is evident from Fig. 2a that the experimental paths lie between the calculated ones for k t = 0.3 and 0.4. 

We assumed k t = 0.3 in the subsequent calculations, which does not conflict with the observed value [9] and enabled one to 

describe all the experimental paths by means of  calculated ones with an error of about 5 %. 

The ratio H/d characterizes the geometry of  the cleaved piece (d is the distance from the mouth of  the crack to the 

cleaving vertex, while H is the distance from that vertex to the point of  emergence of the crack on the surface). The dashed 

and solid lines in Fig. 2b show the experimental and calculated paths for various wedge angles. Lines 1 correspond to the 

following parameters: 2fl = 30 ~ c~ = - 7 3 " ,  c~ 0 = 17", Hid = 1.17; lines 2 correspond to 2/~ = 45 ~ o~ = - 7 5  ~ a o = 15 ~ 

Hid = 1.40; and lines 3 to 2fl = 60 ~ c~ = - 8 2 " ,  % = 8", H/d = 1.68. The experimental values of  H/d are given. 

Figure 2c shows a series of calculated paths for wedge angles 2fl = 10; 20; 30; 45; 60; 80 ~ (lines 1-6 respectively), 

which have been obtained for identical initial parameters k t = 0.3, ot = - 8 0  ~ ot 0 = 100, while for comparison the dashed 

line shows the experimental path for 2/~ = 45 ~ It is evident from parts a and b of Fig. 2 that increasing k t and 2/~ raises H/d, 

since the angle between the direction of action of  the localized forces and the wedge axis decreases as k t and 2/~ increase, so 
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the compressive components of the localized forces increase, which are directed along the crack, and which tend to straighten 

it out. This is confirmed_by the following example. 

The dashed line in Fig. 2d represents the experimental path for 23 = 45 ~ ce = - 7 2  ~ oe 0 = 18 ~ H/d = 1.30, while 

tile solid lines are calculated paths. Path 1 was obtained with k t = 23 = 0, an infinitely thin wedge without friction, with the 

localized forces directed along the normal to the axis of  the nuclear crack, Hid = 0.8, while path 2 is for 23 = 0, k i = 0.3, 

an inf'mitely thin wedge with friction, with the localized forces deviating from the normal to the axis of the nuclear crack 

towards the vertex of the wedge by the angle 3' = arctg k t, H/d = 0.98; path 3 is for 23 = 45 ~ k t = 0, namely a wedge 

having 2/3 = 45 ~ without friction, with the localized forces deviating in the same direction by angle/~, and H/d = 1.03. We 

note that arctg k t < 3. Path 4 was calculated for 23 = 45 ~ and k t = 0.3, with the localized forces deviating from the normal 

to the axis of  the wedge (at the vertex) by an angle 3 + % H/d = 1.28. This example shows that it is necessary to incorporate 

the wedge angle and coefficient of friction to obtain adequate results in describing wedging. 

We have seen above that oe is measured with a certain error in the experiments, so it is of  interest to estimate how a 

small change in ce affects the shape of the cleaved piece. On the other hand, the direction of action of the wedge may not be 

coaxial with the direction of  the cleavage crack, i.e.,  the condition oe o = r /2  + ce may be violated. Calculations show that these 

two factors have identical effects on the path shape when there are small deviations, i .e.,  the paths obtained with oe I = oe + 

~oe and when the coaxiality conditions are met almost coincide with the paths calculated with inclination ce for the nuclear crack 
1 

and oe o = c~ 0 + ~ce, in which the coaxiality condition is violated by +See. For example, if2/3 = 60 ~ ce = - 7 7  ~ oe 0 = 13 ~ 

then H/d = 1.84. With ~oe = 5:3", we get Hid differing from the initial value by about 5%. 

Figure 2e shows the effects of such deviations. Here the dashed lines show the experimental paths corresponding to 

23 = 45 ~ ce = - 9 0 " ,  oe o = 0, with H/d = 1.80-1.88. The calculated path 3 corresponds to these initial data. Paths 2 and 

4 were calculated with the coaxiality condition obeyed for oe = - 8 8  and - 9 2  ~ respectively, while path I was calculated with 

oe = - 9 0 " ,  ce o = 5 ~ and path 5 with oe = - 8 5 " ,  oe 0 = - 5  ~ In the last case, ce = - 8 5  ~ and the angle between the direction 

of the cleavage crack and the direction of the wedge axis is 10". Certain differences in the experimental paths may be due to 

the effects of those factors. 

925 



0 
yll,. 

-5- 

-10. 

-15 

0 

~ 5 a I !t/l, 

- 1 0  - 

- 1 5  - 

7 

"20 -20 
o ~ lb is i/to 

b 

0 5 10 1'5 X//~ 

Fig. 5 

From (6) we determined ks, = KIcv~/F V'~, which describes the limiting equilibrium. From it we can construct the 

dependence of the limiting axial force F• needed to advance the crack at each step from L/d, where L is the length of  the chord 

joining the ends of the growing crack. The force F., which is recorded by experiment, is defined by 

 ,io H, 2cos tt  + k,J 

The calculations were performed for k t = 0.3, and Kic = 1.02-106 N/m 3/2, the static value for lucite. 

Figure 3 shows results for a crack corresponding to 2/3 = 60 ~ c~ = - 7 7  ~ % = 13 ~ The upper and lower curves 

correspond to change in a by 5:3 ~ The experimental F,  were determined with L/d from 0.55 to 1.10. At the first point, with 

L/d = 0.55, F,  was 3.16-2.08 x 105 N/m in the experiments, while at the subsequent points, the spread is much less, and it 

is shown in Fig. 3 by the vertical lines. Naturally, it is difficult to expect that quasistatic calculations will give exact agreement 

on the variation of  the limiting axial load and the experimental dependence. An approach to the experimental values can be 

made by incorporating the dynamics as follows. The mean crack speed in this interval is about 230 m/sec, so one can take the 

dynamic value for Klc, which corresponds to this velocity [9] and exceeds the static value by a factor 1.7. The dashed line in 

Fig. 3 corresponds to that dynamic K~z c. 

The maximum F,  increases rapidly with the wedge angle in the calculations. For example, with k t = 0.3, cz = - 8 0  ~ 

cz 0 = 10 ~ and wedge angle 2/3 = 10; 30; 60; 80; 90 ~ we get we get F ,  = (0.54; 0.92; 1.93; 3.55; 5.26)-105 N/re. However 

2/3 = 95-100 ~ the stress intensity coefficient k 1 becomes negative, i.e., a large-angle wedge cannot cleave the specimen. 

It has been shown [10] that the pair of localized forces Y, directed downwards and applied to the boundary of  a free 

half-plane at points symmetrical relative to the mouth of a free crack orthogonal to the surface will be equivalent to the action 

of a pair of forces 2Yhr directed horizontally and tending to compress the crack. Therefore, in wedging of a half-plane, the 

effective horizontal components of the localized forces decreases as the wedge angle increases and become zero when tg(/~ + 

-y) = ~r/2. Then if k t = 0.3, wedges having 2/3 > 82 ~ cannot advance the crack. A similar explanation evidently applies for 

the present case. The calculated paths in Fig. 2 were derived for ~old = 0.1. The paths come into coincidence as this ratio 

decreases. 

Wedging by a sharp knife, when the crack emerges on a vertical face (experimental data for lucite provided by A. F. 

Revuzhenko) gives H/d = 1.27-1.73. If  we assume 2fl = 20 ~ k t = 0.3, then when the initial crack deviates from the vertical 

by +5  ~ the calculated value is H/d = 1.40-1.73, while for 2fl = k t = O, H/dvaries over the range 1.11-1.43. 
Crack  Emergence Path on Free Surface with Wedging. The above study concerned cracks emerging on a free 

vertical surface. We consider how substantially a free vertical boundary affects the results. For this purpose we consider the 

limiting case d --, oo, i.e., N = 1, and we have simply a free half-plane, from the boundary of which a crack begins to grow. 

Here, as previously, we assume that at the initial instant a nuclear crack of length 2/0 is rectilinear and 

TO)(e) = w~t)(~)e ia + z ~ = 1o(1 + e)e ic~, I~1 ~< 1. 

We examine how the main wedging parameters 2/3, k t, and oz affect the path shape. 

The shape of  the path remains virtually unaltered for gently inclined paths of  cracks from hydraulic fracturing emerging 

on free surfaces [1] as the increment step G varies widely, whereas in our case of steep paths, it is very much dependent on 
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the increment step ~ = ~/l o. Lines 1-5 in Fig. 4a show the calculated paths for ~ = 0.1; 0.2; 0.4; 0.6; 1.0, corresponding to 

the initial parameters 2/8 = 10", k t = 0.3, o~ = - 6 0 " ,  t~ 0 = 30*. For/ t  --, 0, the paths converge to the limiting one and the 
characteristic dimensions of the paths vary linearly with respect to ~. The basic parameters of the limiting path are less than 

the calculated ones for ~ = 0.1 by less than 5 %. Lines 1-5 in Fig. 4b show how the dimensionless limiting force ~" = 
____,v~/~FIK,-~[~ varies with L/ l  O. There is a small initi~_ segment of stable crack growth. The maximum values of  are only 

slightly dependent on ~; for example, F = 3.79 for/ t  --, 0, while F = 3.94 for ~ = 1.0. This situation is one in which the 
shape of the emergence path for an inclined crack on a free surface is markedly dependent on the increment step and is due 
to the geometry, not to the choice of  loading form producing the crack motion. Additional calculations have shown that this 

dependence on ~ occurs also for hydraulic fracturing cracks. 

Figure 5a shows calculated emergence paths for_inclined cracks on a free surface produced by a pair of  localized forces 
orthogonal to the nuclear crack for the minimum value/i = 0.1. Lines 1-6 correspond to t~ = - 6 0 ;  - 6 5 ;  - 7 0 ;  - 7 5 ;  - 8 0 ;  

- 8 5  ~ It was assumed here that 2B = k t = 0, with line 7 the path for which o~ = - 7 5 " ,  t~ o = 0. With that choice, the 
localized forces are applied at the points z I = 1 - -  i, z 2 = - 1  - -  i, and their direction is parallel to the free surface. This 

model demonstrates again the stabilizing effect from the direction of action in the localized forces. 

The corresponding paths for hydraulic fracturing cracks are very close to paths 1-6. Also, with 2/3 = k t = 0 and a o 

= ~ + lr/2, all the inclined cracks emerge on the free surface. With a = - 6 0  ~ the L/ l  o dependence o f f  does not have a 
maximum, i.e., for the crack to advance further, the sufficient values of the forces are less than those corresponding to_the start 

of  motion. For t~ < - 6 0 " ,  there are initial parts with stable crack growth, and further growth requires larger F. As cr 

approaches - r /2 ,  the maximal F increase, and the ranges for stable crack growth are widened. 
Figure 5b shows a series of calculated paths represented by solid lines 1-7 for ~ = - 6 0 " ,  c~ o = 30 ~ and the above 

k t = 0.3, which illustrate the change in form in accordance with 2/8 = 0; 10; 20; 30; 40; 50; 60*. For comparison, dashed 

lines 1-3 show the paths corresponding to 2/8 = 40 ~ for k t = 0; 0.1; 0.2. As k t and 2/8 increase, the crack paths tend to 
straighten out. Figure 5b implies that for k t = 0.3, only a wedge with small 2/8 will cleave off a piece, even for an initial crack 

with inclination angle tx = - 6 0  ~ and the cracks tend to propagate rectilinearly as the wedge angle increases. The latter 
markedly distinguishes these paths from the paths of crack emergence on a free vertical surface (Fig. 2a-e) and also from the 

paths shown in Fig. 5a. 
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